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ABSTRACT

An asymptotic method is developed for the solution of linearized
equations governing the flow of a compressible viacous fluid with a free
surface. The approach used here is based upon the ray method expansion
originally developed by Keller. A general uniform asymptotic expansion is
also constructed to remove anomalies in which an amplitude function in the ray

method expansion becomes infinite.

AMS (MOS) Subject Classifications: 76N10, 78BA05
Key Words: Compressible viscous flow, free surface, ray method, uniform
asymptotic expansion,

Work Unit Number 2 ~ Physical Mathematics

Department of Mathematics and Mathematics Research Center, University of
Wisconsin, Madigon, WI 53708,

Sponsored by the United States Army under Contract Wo. DAAG29-80~C-0041 and
the National Science Foundation under Grant No. MCS 800-1960,




SIGNIFICANCE AND EXPLANATION
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"1ﬂ!“nuvaiop~an asymptotic method to solve the linearized Navier-Stokes
equations governing the flow of a compressible viacous fluid subject to free
surface and rigid bottom boundary conditions. The solution of these equations

is assumed to consist of a phase function and an amplitude function. It is

found that the phase functioﬁ satisfies the Hamilton-Jacobi equation, and the
first order approximation to the amplitude function satisfies a transport
equation. The Hamilton-Jacobi equation may be solved by means of the method
of characteristics, which reduces the equation to a set of ordinary
differential equations. Their solutions determine a family of time-space
curves called rays. The transport equation can be easily integrated along
each ray to yield the so-called conservation relation. At certain anomalies
the amplitude function becomes infinite and a uniform expansion is then

constructed to remove these difficulties. e

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.




RAY METHOD FPOR FLOW OF A COMPREBSSIBLE VISCOUS FLUID ;

M. C. Shon.

I. Introduction

Since the ray method was systematically developed by Keller and his co-
workers, much progress has been made in recent years and a review of the
method can be found in Keller {1]. Although the ray method was first

formulated for electromagnetic waves and has been extended to many other

related areas, it has also found a lot of interesting and fruitful

applications to the wave propagation problems of a fluid, especially with a
free surface. In the past decade, many results have been obtained for the
case of an irrotational, inviscid or incompressible, viscous fluid with free
surface. However, only recently the Navier-Stokes equations governing the
motion of a compressible viscous fluid have received much attention, as shown
in the review article by Solonnikov and Kazhiklov [2]. At present very few
solutions of the linearized Navier-Stokes equations subject to free surface
conditions are available, to say nothing of the nonlinear ones. It should be
of great interest to develop an asymptotic method to study these equations.
Indeed their physical applications abound, for example, wave propagation in
the atmosphere or ocean. A compressible viscous fluid may be also used to
model flow in porous media, a discussion of which may be found in Bear {3].
In the derivation of the ray method by Keller [1] for surface waves on ﬂ
water over a variable bottom, upon which our approach is based, a wave-like

solution with an amplitude function and a phase function was assumed, and the

»
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boundary conditions at the free surface and the rigid bottom were taken into
account as an integral part of the formulation of the method. The three-
dimensional problem is reduced to the problem of constructing rays and wave
fronts on the two-dimensional equilibrium free surface, and the solution of
partial differential equations is reduced to the integration of ordinary
differential equations along rays. This method has since proven very
successful in dealing with the problems of wave propaqatién in a fluid with a
free surface (Shen, [S]). For the problem considered here, we adopt the form
for the ray method expansion used in Cohen and lLewis {6], Voronka and Reller
[7). It is also a well known fact that the ray method expansion in its usual
form may fail at anomalies where the amplitude function becomes infinite. We
then use a modified version of the uniform asymptotic expansion in Shen and
Keller [8] to remove these difficulties. The uniform asyptotic expansion at a
caustic was first developed by Ludwig (9] and Krautsov [10].

The approach used here may be sketched as follows: We consider a shallow
layer of a compressible viscous fluid supported below by a rigid bottom &nd
bounded above by a free surface. The rigid bottom is assumed to vary slowly
in two horizontal directions. A large parameter £ is introduced as the
ratio of the horizontal length scale L to the vertical length scale H. The
governing equations are nondimensionalized in terms of the dimensionless
variables appropriately chosen. Furthermore, we also assume that the constant
viscosity is of small order so that a Reynolds number to be defined is
large. PFirst we construct the usual ray method expansion involving a phase
function and an amplitude function. By substituting the expansion in the
equations, we obtain the Hamilton-Jacobi equation for the phase function,
which in turn determines a family of bicharacteristics called rays. The

successive approximations to the amplitude function may be obtained by

=g et

T in ™o v raPLTRI T




integrating transport equations along the ray. The construction of a uniform
asymptotic expansion is motivated by the form used in [9], [10], and based
upon an ordinary differential equation as a comparison equation. A transfor-
i. ’ mation is discovered to reduce the results for the ray method expansion to
those for the uniform asumptotic expansion. By appropriately chosing the
coefficients in the comparison equation and a conservation relation along each
ray the uiplituda function becomes finite at an anomally.

We formulate our problem and construct the ray method expansion in §2.
The uniform asymptotic expansion is given in §3. Discussions about some
special cases and possible extension of the results obtained are presented in

§4. Some of the detailed derivations are deferred to the appendices.
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. 2. Ray Method Expansion

The linearized Navier-Stokes equations governing the motion of a

compressible viscous fluid are assumed to be the following:

* & * ® * &
P ot (pgu) o+ (v ) , + (pgw) =0 , (1)
t x Yy z

®* ® * $ * -t
pou a™"P o +u o2 + (u/3)(V* e u) . ¢ (2)
t x x

BV 4 =P 4 *H TV + WANT, T, (3)

t b 4 b 4

. —
t't . -p. . - p.g . Vfw. +(W/3NY, cu), (4)
t z z

» * * 0 (5)
(dp,/dp)p
subject to the boundary conditions:

At z =0,

V e tw o=0 , (7)
z Y

* » ] ——t
-p + pogn - (2u/3)V' eu + 2uwz =0 ,

* *
n o, -w =0 ; (9)
t

* * * * -
at z = -h (x ,y ), u =0 . (10)

Here x',y' are horizontal coordinates and z' is positive upward, t' is
— - 'S - *
the time, V = 3/, 3/ay', 3/4,")r u = (u,v ,w) is the velocity, p, is

*
the equilibrium density, considered as a function of Py the equilibrium

[
pressure, p is the density, q' is the constant gravitational acceleration,

*
4 is the constant viscosity, 2 = n is the equation of the free surface

and z' = -h' is the equation of the rigid bottom assumed to vary slowly in
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*
the x' and y' directions. We note that Py is a function of :'
* * * L ]
satiafying pot. - -po. Po ™ 0 at =z = 0.
Motivated by the assumptions made before, we introduce nondimensional
variables and parameters as below:

- - - 1
(xoy,2) = (82" ,8"%" 2" v/m, ¢ = 67% /()2 ,

- 1 1
q= (u,v) = (u.,v./(gl-!)/z, we B\v./(gll)/2 P

- » L 3 1] . @
p=p /lpy(0)gRI, p, = p°/[o°(0)gﬂl. P =p /pyt0) ,

* * * *

Po = 90/90(0). n=n/d, h=h /" ,
* 1/2

R= po(o)(qn) H/w, 8 = L/H ,

where we assume R is large and without loss of generality we gset R = 8, In

terms of the nondimensional variables (1) to (10) become

P *+ V * (pga) + Blpw) =0 , ()
\ Pl * Vo = BVPg + g + (/WD + (/18 W, (12)
oW + B3 (p.+p) = 8730w + BW  + (1/3)(Veq) + (B/3)W (13)
0t 3 zz Vg zz '
P = pplpglp (14)
at =z = 0,
a’Ez + =0 , (15)
2 -, =
B5(p-n) + (2/3)(87'V - q+ W) -2w =0 , (16)
! n = BW=0 ; (17
at z-"h'
3 =0, w=0 , (18)

where ¥y = (3/3x, 3/3y) .




For large B8, we assume that the solutions E, W, p, p and n possess
an expansion of the form
b~ expl=B BLt,x,y)] (4, + 8 6, + 804y +e00) (19)
where 8 is called the phase function. Substituting (19) in (1 to (18), we
obtain a sequence of equations and boundary conditions for succ:s.ive
approximations to the amplitude function. The equations for the ’irst

approximation are

wp, = Dok e g+ (P°W1)' =0 , (20)
“Pdy = KBy = gy v 21
P1z = ‘91 ’ (22)
Py = PglPglPy 7
at £ =0,
9y = 0, p, = ny, wN, - W, = 0o (24)
at z= -h'
31 =0, W, =0 , (25)
where W= -st' Xk=Vs .

From (22) to (24), it is obtained that

z 1 1
P, = n, expl Io Py (Pyldz] = NPy, 0y = PPN, (26)

where Pog ™ -po, po(O) = 1 have been used. Now let
q= kn1Q1 ’ (27)

and it follows from (21), (24) and (25) that

Qizz = PRy ™ ~Pg ¢ (28)
Q =0 at z=0 , (29)
Q=0 at z=-h . (30)

Assume that the Green's function of (28) to (30) is given by G(z,z',w,h).

Then
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Q = -!Sh PeG(Z,z" s, h)Az" .

. Finally, we integrate (20) and make use of (25) to obtain

_ 2. 3
w, =un (py = po(=h)) + x°n, [O poQ.az , (32)

e i ——

vhere k = l;l. However, w, must also satisfy (24) and it follows that,

=

assuming n1 ¥ 0,

e

mpo(-h) = kz Igh pogidz, or k2 = H(w,h) , (33)

which yields an equation in the form of the Hamilton-Jacobi eguation, and may

The corresponding characteristic

be solved by the method of Characteristics.

equations are

at/do = H_, dr/dc = 2pk, dw/do=0 |,

(34)

= «uVH, d4s/do = u(2k2 -w ,

dak/d0
wvhere u is a proportionality factor and T= (x,y). The solutions of (34)

determine a two-parameter family of bicharacteristics

t = t(0,0,,0,), T - ;(0,01,02) . (35)

which will be called rays. From (34) we also observe that ® is constant

along a ray, and the phase function is determined by

8= 8og) + [ ux® - wao . (36)
%

where S(oo) is the value of S8 at some point o = o, on a ray.

To determine n, we proceed to the equations for the second

1

approximation

wp, + Pt - pok cq,t V'(poqz) + (powz)z =0 , (37)
WP, * Podyy ~ XPy * YRy = q,,, = (1/3)kW, (38)
r
P ™ 7Py (39) '

- 1]

¢ Gy =0 Py =My, wny £ N, -W, =0, (41)



From (39) to (41), we obta n as before that
= - ’ .
pP. PoNar Py po(po)pon2
Now we let

I = (kn2 - Vn1)Q1 + Q2 '

where Q, satisfies (28) ro (30). Then it follows from (38), (41) and (42)

that
Qypp = WPeRy = Pody, * (1/3)kW,

Ezz-o, at z =90 ’

Qz.oo at z = <h .

Integrating (37) with respect to z from z = ~-h to z = 0 and making use

of (27), (33), (41) and (42), we have

0 -~ -— - . -
o MqPg(PgIPg *+ PRk * Vny = ook © Q) + Ve(pgkn 0 )]dz

t Ny =0 -

Upon multiplying (48) by 2n and rearranging the terms, we finally obtain

1
2 2 - 2
Ve -
(In1 t + (Iﬂ1 dr/at) Aﬂ1 =0 ,

where

2 (0
I =pyl=h) -~k I-h PoR,w dz

2 (0 0 2 ' ' '
A=k [ pgtz) [ Glz,z',w,h) lwp 2 + kQ, (2" )py(2*)]dz" .

The detajiled drivation of (49) is deferred to Appendix A. Let J(0)

Jacobian of transformation from the ray coordinates o, o g to the

1’ 72
y coordinates, where we choose t = 0. By the well-known identity
37! ay/ae = ve(dz/ae)

(49) reduces to

d(Ian)/dt - AJni .

(42)

(43)

(44)

(45)
(46)

(47)

(48)

(49)

be the

t, X,

(50)




Integration of (50) along a ray yields
anﬁ cxpl-I: AI-'dt] = constant . (51)
0
As seen from (51) n' may become infinite at anomalies wvhere, for example,

J(t) = 0. To remove them, we shall construct a uniform asymptotic expansion

in the next section.




3. Uniform asymptotic expansion

The construction of a uniform asymptotic expansion is based upon the
approach developed in [11], and a discussion of the method may be found in
{8]. Assume that E, W, P, P and N possess an asymptotic expansion of the

form
¢ = exp(-80) 10 Vv(8'e) + 8% 0 v (a¥ey)) (52)

v
where V(B £) satisfies the second order ordinary differential equation

v (8e) + 8™ p(E)v (8YE) - B2 V% (E)v(sVE) = 0 ,

(53)

(1) | g=1,(4) 2 (1)

( [N X ] -
0, ¢2 03 + , =12 .

¢

@ and £ are functions of t and r only, V is a nonnegative nuaber, and

P(E), Q(E) are functions to be chosen. We define

’ - ’(1)*Q¢(2) ~ ¢f + 8-102 + 8-2¢§ 400 . (54)

st =02 [ ouenias, ot = 2ig +0m) (55)
and substitute (52) for q, w, p, p and nh dn (10) to (17). Next we collect
the coefficients of V(8'E) and V'(B'E) and set them to zero. Then we
multiply the coefficients of V' by QB_v+1 and add them together and
subtract them from the corresponding coefficients of V. Making use of (54)

and (55), and omitting the superscripts *, we obtain

(), poz‘z’-ve) =0. (56)

B(pw - poq-k + 'z) + pt + v-(poq) - D(p .

-~ = - 2 2
Bloyg, - BX) + 03, *+ o - Dipga‘ P, + p'*ve)

t
(s7)
- = -1
=B8q - (1/3)kw_+ O(B") .
py+ e =08 , (s8)
p* = p(p,) (59)
o{Pglp

at z = 0,




oo e €

a + 082 =0, p-n+o8) =0 ,
(60)

2)

Btan = w) + n_=pgn‘Z a0,

t
at z= .h,
=0, =0, (61)
-1 -2 -1 -2
whexre O(8 ), O(B °) denote terms of orders 8 and 8 respectively and
will not be used in the sequel.

The equations for the first approximation are

wp, - po’i . ?;1 + (pgw,)_ =0 , (62)

Poud, = kpy = Qygp (63)

L (64)

Py " 96(90)91 H {65)

at z =90, ;}‘ = 0, Py = Ny, wn, ~w, = o, (66)
at z = <h, ;1 =0, v, = o . (67)

which are the same as (19) to (24). The results obtained for the first

approximation in the ray method expansion can be carried over without change,

and the Hamilton-Jacobi equations for St are

- 4 .2 (0
o t-n) = x5)® [0 of poae (68)
the solutions of which determine two two-parameter families of rays
et

- e*(o,o‘,oz), ™ = 0,0 9, . (69)

1

To obtain a conservation relation for n we need the equations for the

‘l
second approximation

- .- . - - (2)
wp, + p't P09, k+ v (poq1) + (povz)z D(D1 4

t
(70)
+ poiq"”-ve) -0 .
4
~ = U= . (2) (2)
Pg¥dy * P°qy = kP + TPy = Dlpya,” £, + p," 78 i
(M)

=, - (VNN .

-1t=

i 5> am il £

- ———— - a R et T T U




pz + pz = 0 ’ (72)

L T T 7t AR AT G

at =z =0,
qzz - 00 pz - “2 ’ (73)
(2)
wn, = w, + e DE‘:“1 =0 3 (74)
at z = -h, 35 =0, w, =0 . (75)

From (72) to (73), we easily obtain that
As seen from (71), (73) and (75), we may let
q " (knz - Vn,)Q1 + Q2 + 93 (77)

where Q,, 52 satisfy (27) to (29), and (45) to (47) respectively, and 65

satisfies
- - - (2) (2)
Q5. = WPgQy D(Doq1 Et tp, ve) , (78)
Q3z =0 at z=0 , (79)
33 =0 at z=-=h . (80)

We now integrate (70) with respect to z from gz = ~-h to 2z = 0, and make

use of (27), (68), (74) and (75) to obtain

o — - o -
[l (0, P(RgIPg + PoR KN, = p KD, + Velp kn Q )14z + n .
(81)

(2) ~(2)

o0 == 0 (2)
[ Poke2yaz + [ Do 'k, + o)

1

*VE)dz + DEtn

Note that the left hand side of (81) is the same as (48). We multiply both
sides of (81) by 2n1. and follow the same derivation given in Appendix A

to obtain

2 oz (02 2
(In), + Ve2k ]_h nyPoRds - AN,
(82)

- (0 == 0 (2) -(2), (2) .
j_h 2 pokeQ,dz + 2n I_h Dip '€, + poa,” *VE)az + 2n DE n,

In Appendix 2, we show that if

=12~




-1

n -ME)C'. and 2R* = RDQ . (83)

1
Then c‘ satisfies the same conservation relation in the ray method

expansion, and it follows that, along a ray

J*x‘n'z(nf)zoxpl-lt at(1%)"'ae) « constant . (84)
0
Prom (55) and (79), we find that
1
R = Rexpli1/2) [SP(E1aEY), P = [l0g (R/Q)1* . (85)

At an anomaly, we may choose R so that R-‘nf

there. P, Q and u should be suitably chosen to make (53) as simple as

tend to a finite limit

possible.




P
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4. Discussion

To apply the present results to flow of a compressible viscous fluid with
a fixed upper boundary, we simply replace the boundary conditions at z£ = 0
by E =0, w=0, at z = H, the equation of the upper boundary, and n,
by py(H), the value of p; at z = H. The Hamilton-Jacobi equation assumes
the form

wlp (~h) = p (B)) = k2 [ 0 p az
0 0 =h *170 '

vhere Q4 satisfies (28) with Q= 0 at z = =h, H. The conservation

relation along a ray is still the same as (50) except I and A are now

given by

2 (H
I =p,(-h) - po(H) - X" [ Q poaz ,

a=x? [ o ) [B Gzt e upy , + k70 (2 )0y (20 )10z

The uniform asymptotic expansion for this case can also be dealt with
accordingly.

As an illustration of the construction of a uniform asymptotic expansion,
we consider a strictly convex caustic where J(t) = 0. PFollowing [9], we
choose u = 2/3, Q9 = 51/2, ana R=£7% prom (85), P =0 ana (53) becomes
the Airy equation

v %) - 2 v -0 .
If there are two caustics corresponding to £ =0, £ = 51, then (53) becomes

the equation for Weber functions

vi(E) - 87E(E e =0,

4 ]
4 (51°€) /‘. P=0 and W= 82. The contruction of a

where vV =0, R = E'
uniform asymptotic expansion at a line of zero depth may follow the procedure

developed in {12], and we shall omit the derivation here.

-14-
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PFinally we make some remarks regarding the possible extensions and

applications of the ray method. If the fluid region is channel-like, that is,

I e e

the rigid bottom varies slowing in one direction only, say the x.

direction. In this case, we introduce the following nondimensional variables

-2 L * »
(x,y,2) = (B 'x ,y ,2)/H ,

- 1
g= (v,w) = !!(v'.w“)/(gl!)/2 .

and the remaining ones are the same as before. Then we assume 8 = S(t,x)
and the ray method can be carried out without much difficulty.

In this paper we only consider the case of large Reynolds number R.
With a change of the stretched variables, the ray method can also be extended
to the case of finite R, but the derivations will be much more involved. We
also note that the results obtained are only valid for positive phase
function 8 and then the nonlinear terms omitted will have a negligible
effect. One of the interesting applications of the method to physical
problems is to consider a point source on the free surface, for example to
model a well in an unconfined aquifer. Mathematically, we simply add a Dirac
distribution on the right-hand side of (17). First we construct the rays from
the source based upon (33) and (34). The phase and amplitude functions are
given by (36) and (51). Then the initial conditions for them are determined
by the asymptotic expansion of the exact solution of a canonical problem based

upon a system of boundry layer equations near the origin. The procedure to

solve a similar problem may be found in (11].




Appendix A

In (48), we first note that
2n fo 0.Q, k*¥n_ + 2 !o n Ve(p kn.Q, )dz
1 /=h "0"1 1 -h 1 0 11

= 29-f ¥njo,0,er
where Q, = 0 at z = ~h. Next from (27), (45) to (47),
g, = [2, stz,2,0,m) o (2" ) (Rn0 ) + (1/3)%w, laz .
We collect the terms with time derivatives in (48) to obtain
2n1n1t[12h Pg(pgIPgdz + 1 - 2n, jfh Pg (2) jfh kepy (' In,Q (3')), x

G(z,z',0,h)dz'az
2

= - o -..- L} L} ]
(n3), Pyl=h) + 2 j_h ke (kn,Q.). n,Q,(z')p (2 )dz
- NN S 2 /0 .22 .
5T MPel-M) + ny [ xQlpjaz') .
Where we have changed the order of integration and made use of the symmetry

property of the Green's function in the second integral. Hence, (48) assumes

the form

32 o .22 0 =2
3¢ (Ny[eg(=m) + [ x“Qlo de'} + 29 « [’ knip 0 ax

(A.1)

2
1-0 .

Finally we go back to (33). Assuming w as a function of ;, we have, by

differentiating both sides of (33) with respect to k; where X = (k1.k2).

1

ax 0 2 (0 -
Ju/dk, = Ti/at = 2k, [ 0,0 aslpg (-h)-k" [T a]” . (A.2)

2,4P0
We show that
0 2 0
= [op PefyaE = [, g9, 88 . (A.3)
Prom (28) to (30), we f£find that Q1u satisfies

o2z = P00 = Po?y ¢

Q1mz =0 . at z=0 ,

Q""-o ’ at z = -h .,

-16=
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Q,u = Ig,‘ G(Sp!',d,h)onidt' . (‘.‘)

It follows that
12, pote10  (m)ax = [0 o (x) [0, Gla,s',w,h)0 (2010, (2 1ax?

0 2
= = [l Pofyee
by integration by parts, symmetry of the Green's function and (31). From

P

-17=-

xr - Rt



i
i
]
T
4
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Appendix B

We substitute ny = R(E)Z, in (82) and obtain

2

2. . 2 = (0 2 2
ROL(IE5), + 2Vek [ 0 0,874 - As() = -2RR’[1ZQE,

+ 29§k Ifh ‘f“oqtd'] + & ]fh z;1tpoiiisaz + (B.1)
+ p(2i2g, + 0,q; ') vE) + DE 21?108 = mus

whers ;:” - (;: = €})/(20). If we can show that the RHS of (B.1) is zero

e o e e

under (83), then C' satisfies the same transport equation as (49), and (84)
follows.
Prom (26), (27) and (S4),
LN OO Vet A NN A Ve T

2 + - 2 + -
pi2) = oot} - n )/020), p: ) - PgPo(Ny = My)/(20)

;) = (& *njp} - X Ty

2

We substitute them in the RHS of (B.T) and consider the upper sign first. The T
coefficient of (§+) is

W w2 e &% KT [ o0fas

which can easily be shown to be zero by uge of (31) and (A.4). The
coefficient of C+¢- is found as

e R T w0 ota) [0 optetat e et 6t nIQT (2" Van ae

(B.2)

+ 2 egter [2, otz (6 e 2,0t m) - GT( 0 w7 ) 0n ),

where we have used the relations

t £, (0 t
w’py(=h) = (k7 I_h Po2ds -

To show (B.2) is zero, we apply (28) and (30) for Qf:

.

t - - t = -
L Q: Qﬁu poth' Pp (8.3)

qf' =0 at £=0 , (B.4)

-i8=




gf-o at z=<h . (B.S)

Then let [, Uvas = (U,V), and ve have from (3)

- + 4+ + - - - + +
(B.6)
+ “a~ - +

- (91'-90“ 91) = (91’-90) - (910-90) .

By the boundary conditions (B.3) and (B.4), (B.5) becomes
' + - + - + -
(0" = o )py0,,Q,) + (pg,Q)) = (py,Q,) =0 .

The LHS of the above equation reduces to (B.2) by integration by parts,

symmetry of the Green's function and (31). Siwmilarly we can also show that

the RHS of (B.1) coresponding to the lower sign is also egual to szero.
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(2]

(3]
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